Physics


III.26 Electricity: Fields, Waves and Semiconductors
Florian Schulz | Sunday – Wednesday, 2.45 – 4.15 pm
Selected experiments to develop the concept of voltage and current in the electric field.      
Experiments with the Solid-state-tesla transformer as a middle wave transmitter: a way to understand electromagnetic waves.
From gas discharge to semiconductors. A phenomenological approach to MosFets and diodes.

IV.38 (bilingual) A Context-Based Approach to the Atom
Wilfried Sommer | Sunday – Wednesday, 4.45 – 6.15 pm
Integrating potential interactions with the environment in a local concept. A descriptive approach to the atom.
Hans Primas’ idea to look at electrostatic and electrodynamic contexts separately. His statement regarding the material world.
Systems of reference for an electron localized in the atom.
Chemical elements, constant and multiple proportions, electrochemical series, electrolysis, structure of compounds.

Mathematics


I.02 Projective Geometry
Steffen Brasch | Sunday – Thursday, 8 – 9.30 am
A well tested approach for teaching projective geometry in grade 11. Suitable for teachers without previous knowledge.
We will start with projections and doing lots of geometrical constructions leading inevitably to the invention of the specific elements of projective geometry like the points at infinity.
Please bring your drawing instruments.

I.03 Motifs from Spherical Geometry
Jessica Krause | Sunday – Thursday, 8 – 9.30 am
How do our familiar mathematical objects such as points, lines, circles, or triangles appear on the sphere? What are the implications for fundamental theorems of geometry, and how can we calculate with them? These are questions that will be addressed in the course.
Please bring geometric drawing tools.

III.28 Thinking Actively in Mathematics
Marisha Plotnik, Beth Weisburn | Sunday – Wednesday, 2.45 – 4.15 pm
Experience and learn how to create engaging assignments for students.
Examples from calculus, projective geometry and other 11th grade topics will be demonstrated.
Participants will actively collaborate in effective mathematical dialogs.

III.29 (bilingual) Polar Euclidean Geometry – a Geometry for the Visual Space?
Steffen Brasch, Thomas Neukirchner | Sunday – Wednesday, 2.45 – 4.15 pm
Polar Euclidean geometry is a new geometry that includes all the features known from Euclidean geometry, such as measuring lengths and angles. In addition, every Euclidean theorem and concept has a dual counterpart, as in projective geometry.
We will explore the basic ideas and tools of this geometry and discuss its relationship to the visual space. In particular, the optical lens will be treated in this context.
Basic knowledge of projective geometry is assumed.

IV.40 Math as a Journey of Exploration
Birte Vestergaard | Sunday – Wednesday, 4.45 – 6.15 pm
Creating a classroom environment where students feel safe to fail, safe to ask questions and safe to share their ideas. How this safety makes it possible to turn the differences of academic levels among students into valuable teaching resources.
On this basis: How math can be taught as a journey of exploration using discovery sheets that make students discover mathematical laws themselves, working in small groups.
How to create own discovery sheets.

Computer Science


II.12 (bilingual) Machine Learning and Neural Networks
Norbert Harz, Robert Neumann | Sunday – Wednesday, 11.30 am – 1 pm, and Thursday, 9.45 – 11 am
Various projects will be discussed on how the topic of machine learning and neural networks can be dealt with in class.
The computer science unplugged method will be used predominantly, i.e. the work will be action-orientated and analogue.